
PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, VOLUME 7, 011302 (2004)
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Extraordinarily high fields generated by focused lasers are envisioned to accelerate particles to high
energies. In this paper, we develop a new method to calculate laser acceleration in vacuum based on the
energy exchange arising from the interference of the laser field with the radiation field of the particle.
We apply this method to a simple accelerating structure, a perfectly conducting screen with a round
hole, and show how to optimize the energy gain with respect to the hole radius, laser angle, and spot
size, as well as the transverse profile of the laser. Limitations and energy scaling of this acceleration
method are also discussed.
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To demonstrate advantages of the new method, we
apply it to a relatively simple problem: laser acceleration

We use the energy balance equation for the electro-
magnetic field (see, e.g., [6,7]):
I. INTRODUCTION

Acceleration of charged particles by laser fields in
vacuum can be calculated as

�Uacc � e
Z

E � vdt; (1)

where �Uacc is the energy gain, e is the charge, E is the
electric field, v is the particle’s velocity, and the time
integral is taken along the particle’s path. In a straight
trajectory approximation, when v in Eq. (1) is considered
as a constant unperturbed velocity, according to the
Lawson-Woodward theorem [1], laser acceleration in vac-
uum is possible only in close proximity to material
boundaries. The acceleration occurs because currents
and charges induced by the laser field in the material
distort the incident electromagnetic field in a way which
gives a nonzero value for the integral.

A direct calculation of the integral in Eq. (1) requires
solving Maxwell’s equations in the vicinity of the mate-
rial boundaries. In most cases, this leads to a formidable
electromagnetic problem and requires extensive numeri-
cal computations. Only very simple geometries allow an
analytical calculation of the energy gain directly from
Eq. (1) (see, e.g., [2,3]).

In this paper we develop a new method to calculate the
energy gain �Uacc. It is based on the energy balance
equation for the electromagnetic field energy and the
particle’s energy, and only requires knowledge of the
radiation field in the far zone. In its most general formu-
lation, it is not limited to vacuum and straight trajecto-
ries. It can also be used for acceleration in a medium
(e.g., inverse Cherenkov acceleration), and curvilinear
trajectories (such as in inverse free-electron laser (FEL)
acceleration).
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of a particle passing through a round hole in a perfectly
conducting metal screen. The assumption of perfect con-
ductivity of the metal is valid if the laser frequency is
smaller than the plasma frequency for the metal. Two
different laser illuminations are considered: first with a
higher-order laser mode, and second with two crossed
Gaussian laser beams. Note that crossed Gaussian lasers
are used in the LEAP experiment at Stanford University
[4] and in the proposed E-163 experiment at SLAC [5]. In
the limit when the hole radius a tends to zero, we show
that our result agrees with direct calculation of the inte-
gral (1). Taking into account the effect of a damage
threshold for materials, we show how our calculations
also allow optimization of the energy gain for given laser
parameters and find the limits of this acceleration
method.
II. RELATION BETWEEN RADIATION FIELDS
AND ENERGY GAIN

Consider a bunch passing through a hole in a perfectly
conducting metal screen, as shown in Fig. 1. The hole may
have an arbitrary shape, although in subsequent sections
we assume that it is round, with a radius a. At the time of
passage, the bunch is irradiated by a laser pulse, and due
to the interaction with the laser light, particles in the
bunch are accelerated or decelerated depending on the
phase of the laser wave.

We introduce a surface of large radius R enclosing
a volume V which includes the acceleration area.
Eventually, we take the limit R! 1. Initially, at t!
�1, a particle in the bunch and the laser pulse are
located outside of the surface S. After the interaction,
when t! 1, they leave the volume V.
2004 The American Physical Society 011302-1
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FIG. 1. (Color) Layout of a vacuum laser acceleration experi-
ment. A perfectly conducting screen with a round hole of radius
a is located at z � 0. Initially, a particle and a laser pulse are at
position 1 outside of the volume V.
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V
dV

E2 �H2

8�
�

Z
V
dVj �E � �

Z
S
S � ndS;

where the integration goes over the volume V with the
surface boundary S, n is a unit vector in the outward
direction normal to the surface, j is the current density, S
is the Poynting vector, S � �c=4��E	H, and H is the
magnetic field. Integrating this equation over time, from
t � �1 to t � 1, and taking into account that at t �

1 there is no electromagnetic field inside the volume V,
we find

Z 1

�1
dt

Z
V
dVj �E � �

Z 1

�1
dt

Z
S
S � ndS:

The current density j includes the current in the metal
and the current associated with the moving point charge,
j � ev��X�t��, where X�t� is the particle’s trajectory. The
former, however, does not contribute to the integralR
dVj � E, because this integral is equal to the energy

deposited inside the metal due to the Ohmic heating,
which is neglected in the limit of perfect conductivity.
Hence the integral reduces to e

R
1
�1 v � Edt taken along

the trajectory. It is equal to the energy gain (or loss, if
negative) �U of the particle due to the interaction with
the field. Hence

�U � �
Z 1

�1
dt

Z
S
S � ndS: (2)

Note that this formula is exact and is valid for arbitrary
curvilinear motion of the particle under the influence of
an external field.
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In the calculation of fields, it is convenient to use the
Fourier transform, which we define as�

E�!�
H �!�

�
�

1

2�

Z 1

�1
dtei!t

�
E�t�
H�t�

�
: (3)

Using Parseval’s theorem we find

�U � �
c
2

Z 1

�1
d!

Z
S
Re �E�!� 	H ��!�
 � ndS

� �
c
2

Z 1

�1
d!

Z
S
Re �E�!� � E��!��dS; (4)

where the asterisk denotes complex conjugate, and we
use the relations H � n	 E and n � E � 0, valid in
the far zone.

The field entering Eq. (4) is a superposition of the laser
field, ELS, and the particle’s field, EPS:

E � ELS � EPS; (5)

where the letter ‘‘S’’ in the superscript indicates that
these are the fields in the presence of the screen.
Substituting Eq. (5) into Eq. (4) and employing the nota-
tion �U�E1;E2� � � c

2

R
1
�1 d!

R
S Re �E1�!� � E�

2�!��dS
we obtain several terms. The term �U�ELS;ELS� corre-
sponds to the integrated energy flow of the laser light
through the surface S without the beam. This term van-
ishes because we assume that there are no losses in the
screen and hence the incoming laser energy is equal to the
outgoing one. The term �U�EPS;EPS� describes the energy
radiated by the particle passing through the hole in the
screen when there is no laser field. This term scales as a
square of the particle’s charge and is not relevant to the
acceleration of a single particle considered in this paper.
Only the cross term,

�c
Z 1

�1
d!

Z
S
Re �ELS � EPS��dS; (6)

is responsible for acceleration of the particle.
In what follows, we need a notation for the laser field

without the screen, EL, and the beam field without the
screen, EP.We define the radiation fields ELR and EPR as a
difference between the field with the screen and the field
in free space: ELR � ELS � EL, EPR � EPS � EP. The
radiation fields are generated by currents flowing in the
screen. The fields ELS and EPS can be considered as a
superposition of the radiation fields and the fields without
the screen, i.e.,

E LS � EL � ELR; EPS � EP � EPR: (7)

For calculation, it is convenient to cast Eq. (6) into a
different form. Using the second expression in Eq. (7) we
represent Eq. (6) as a sum of two terms. The first one
involves the particle’s field without the screen:

�c
Z 1

�1
d!

Z
S
Re �ELS � EP��dS:
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This term describes interference of the charge’s Coulomb
field in vacuum with the laser field. In the limit R! 1,
this term vanishes because the Coulomb field moves with
the charge with velocity v < c, and the laser light prop-
agates with the speed of light c. Since we assume that the
laser pulse overlaps with the particle in the vicinity of the
hole, at a large distance from the hole these two fields are
separated in space. Hence, the particle’s acceleration is
given by the second term:

�Uacc � �c
Z 1

�1
d!

Z
S
Re �ELS � EPR��dS; (8)

for which we use the notation �Uacc. Notice that the
presence of the field EPR in this equation indicates that
a particle can be accelerated only if it radiates.

Although in the above derivation we refer to the layout
of the acceleration experiment outlined in Fig. 1, our
result is not limited by this specific arrangement. With a
slight modification, it can also be used for calculation of
the energy gain for other acceleration schemes, such as,
e.g., inverse FEL or inverse Cerenkov acceleration. The
close relationship between acceleration and radiation has
been explored in Refs. [1,8]. Recently, Eq. (8) is also
derived by Xie [9].

In our calculations of the radiation field below we
assume that the particle moves with a constant velocity.
Hence, we neglect the effect of the laser field on the
particle’s trajectory, as well as the effect of radiation
reaction. Such an approximation describes linear accel-
eration proportional to the laser electric field.

III. DIFFRACTION RADIATION ON A
ROUND HOLE

Following the approach developed in the previous sec-
tion, we first calculate the radiation field EPR of the
particle. We now assume that the hole in the screen is
round, with radius a, and consider a relativistic particle
moving along the axis of the screen with a constant
velocity v close to the speed of light. In the limit of the
large Lorentz factor, �� 1, the radial electric and azi-
muthal magnetic fields of the particle are

EP
r �r; z; t� � HP

��r; z; t� �
e�r

�r2 � �2�z� vt�2
3=2
; (9)

where r �
����������������
x2 � y2

p
is the radial distance.

To calculate the radiation field in the far zone we use
diffraction formulas [7,10,11]. This approach is valid if
the reduced wavelength of the radiation, � � �=2�, is
much smaller than the radius of the hole a, and the
diffraction angle is small. According to the diffraction
theory [7], the field behind the screen, EPS, at large
distance R! 1 and in the region z > 0, can be calcu-
lated by integration of the incident field EP on the screen
at z � 0:
011302-3
E PS �
eikR

R
i
2�

k	
Z
hole

e�ikrn	 EPdS; (10)

where r � �x; y� is the two-dimensional vector in the
plane of the hole, k is the wave number vector in the
direction of the radiation, k � jkj � !=c, and n is
the unit vector perpendicular to the surface of the hole.
The integration in Eq. (10) goes over the cross section of
the hole.

Equation (10) is derived in [7] for the case when the
incident wave propagates in free space. In our problem the
incident field is the Coulomb field carried by the particle.
In this case, Eq. (10) gives the total field behind the screen
including the field of the particle, and to find the radiation
field, we need to subtract the Coulomb field of the elec-
tron. The latter can be calculated as the same integral in
Eq. (10) in the limit a! 1, that is when the screen is
removed. The result of such a subtraction is an integral,
with the sign opposite to that in Eq. (10), in which the
integration goes over the screen surface, rather than the
hole [10]:

E PR � EPS � EP

� �
eikR

R
i
2�

k	
Z
screen

e�ikrn	 EPdS: (11)

A more rigorous proof of this equation can be found in
Ref. [11].

The particle’s field on the screen is given by Er�r; 0; t�
and H��r; 0; t� in Eq. (9). Fourier transformation of these
fields defined by Eq. (3) gives

E P
r �r; !� � H P

��r;!� �
ke
�c�

K1

�
kr
�

�
; (12)

where Kn (n � 0; 1; 2; . . . ) is the modified Bessel func-
tion, and we have used v � c in the above expression.

In the limit of large �, the angle of the radiation
relative to the z axis, �, is small, �� 1. Substituting
Eq. (12) into Eq. (11) and neglecting higher-order terms
in �, we find that EPR has the radial component only,

E PR
r � �k

eikR

R

Z 1

a
rdrEr�r;!�J1�kr��

� �
ek2

��c
eikR

R

Z 1

a
rdrK1

�
kr
�

�
J1�kr��; (13)

where Jn (n � 0; 1; 2; . . . ) is the Bessel function. The
integration in the last formula can be carried out analyti-
cally [12],

E PR
r � A�!; ��

eikR

R
; (14)

with

A�!; �� �
e

��c
ka

�2 � ��2

	
�J2�ka��K1

�
ka
�

�

�
1

�
J1�ka��K2

�
ka
�

�

:
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This formula agrees with the rigorous solution of the
diffraction radiation problem obtained in Ref. [13], if
one takes the limit �� 1, ka� 1 of their result. In the
limit �� a��1 (but � is still much less than a) we have
[10]

A�!; �� � �
e
�c

�

�2 � ��2 J0�ka��; (15)

which in a small-angle approximation yields

A�!; �� � �
e
�c

�

�2 � ��2 : (16)

Since the hole radius a drops out from the last equation, it
is also valid in the limit a! 0, when there is no hole in
the screen. In this limit, it is usually called the transition
radiation.

IV. ACCELERATION BY A HIGHER-ORDER
LASER MODE

For the laser field, as in Ref. [3], we first consider a
radially polarized TEM10 mode with the transverse field:

E L
?�r; z; t� � E0eikLz�i!Lt

w0

w
r
w
exp

�
�
r2

w2 � i
kLr

2

2f

� 2i 
�
; (17)

where !L is the laser frequency, kL � !L=c � 2�=�L,
the laser waist with a transverse size w0 is assumed to be
located at the screen, and hence

w2 � w2
0

�
1�

z2

z2R

�
; zR �

kLw2
0

2
;

f � z�
z2R
z
;  � arctan

�
z
zR

�
: (18)

The choice of this higher-order mode is motivated in part
by the fact that it matches the radial polarization of the
diffraction radiation in Eq. (14) and is expected to pro-
duce better acceleration for the same laser energy.

Equation (10) (with the superscript ‘‘P’’ substituted for
‘‘L’’) enables us to calculate the diffraction of the laser
field through the round hole. First, we Fourier transform
Eq. (17):

EL�r;z;!��
1

2�

Z 1

�1
dtei!tEL

r �r;z;t�

�E0��!�!L�eikz
w0

w
r
w
exp

�
�
r2

w2�i
kr2

2f
�2i 

�
:

(19)
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Putting this expression into Eq. (10) yields

ELS
r �z>0��E0��!�!L�

eikR

R
��k�
w0

Z a

0
drr2J1�kr��e

�r2=w2
0 ;

(20)

where, as was defined in Sec. II, the superscript ‘‘LS’’
stands for the diffracted laser field. Note that for a! 1,
Eq. (20) can be integrated to yield

ELS
r �z>0;a!1���E0��!�!L�

eikz

z
k2w3

0�
4

	exp

�
�
k2w2

0�
2

4

�
; (21)

which is consistent with Eq. (19) in the limit z! 1.
As pointed out in Sec. II, it is convenient to represent

the diffracted laser field as a sum of the original laser
field (when the screen is absent) and the field ELR due to
the radiation of the currents in the screen, ELS � EL �
ELR. For the radiation field, we have

E LR
r � E0��!�!L�

eikR

R
k
w0

Z 1

a
drr2e�r

2=w2
0J1�kr��:

(22)

This field was calculated in the region z > 0. However,
due to the symmetry of the screen, it is symmetric about
the point z � 0. In the region z < 0, � is then taken to be
the angle relative to the ��z� axis; here ELR

r represents the
reflected waves propagating in the direction opposite to
the incident laser beam.

We now calculate the acceleration of this laser mode
using the energy balance Eq. (8). Ignoring a pure phase
factor, and noting that both fields ELS and EPR have radial
polarization, the energy gain of the particle is

�Uacc � c

�������
Z 1

�1
d!

Z
S
dSELS

r �EPR
r ��

�������: (23)

In the region z < 0, only the reflected field ELR can
interfere with the radiation field since they propagate in
the same direction (to the left of the screen in Fig. 1).
Writing

R
S dS � R2

R
d� � 2�R2

R
1
0 �d� and inserting

Eqs. (13), (20), and (22), we have
�Uacc �
2�cE0kL
w0

�������
Z 1

0
�d�

ek2L
��c

Z 1

a
rdrK1

�
kLr
�

�
J1�kLr��

Z a

0
dr0�r0�2e��r0�2=w2

0J1�kLr
0��

�
Z 1

0
�d�

ek2L
��c

Z 1

a
rdrK1

�
kLr
�

�
J1�kLr��

Z 1

a
dr0�r0�2e��r0�2=w2

0J1�kLr
0��

�������: (24)

Using the orthogonality of Bessel functions,
011302-4
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Z 1

0
�d�J&�kr��J&�kr

0�� �
��kr� kr0�

kr
; (25)

we obtain

�Uacc �
2eE0kL
�w0

Z 1

a
r2dre�r

2=w2
0K1

�
kLr
�

�
: (26)

For an ultrarelativistic particle we have kL � �=w0

and we may use the approximation K1�x� � 1=x.
Introducing the laser focusing angle 'f � 2=�kLw0�, the
condition for the approximation can also be written as
'f � ��1. Equation (26) then yields

�Uacc � eE0w0e
�a2=w2

0 � 4e

���������
2PL

c

r
exp

�
�
a2

w2
0

�
; (27)

where the average power carried by this mode is

PL �
c
8�

Z
z�0 plane

dSEL
r H

L
r

�
c
8�

E2
02�

Z 1

0
rdr

r2

w2
0

exp

�
�
2r2

w2
0

�
�

c
32
E2
0w

2
0: (28)

Equation (27) shows an important result: in order to
accelerate a particle the laser beam should also irradiate
the material wall of the screen. If the focal size of the
laser light is so small that it does not touch the metal,
w0 � a, the acceleration diminishes exponentially. For
optimal acceleration, we should have a < w0 with the
maximum energy gain in units of mc2:

��max � 4
���
2

p
������
PL
P0

s
; (29)

where P0 � m2c5=e2 � 8:7 GW. For a 1 TW laser, we
find ��max � 60.

In a general case of arbitrary relation between kL and
�=w0, Eq. (26) can be rewritten as

��acc � 4
���
2

p
������
PL
P0

s
G�A;B�; (30)

where

G�A;B� � 2B
Z 1

A
dxx2e�x

2
K1�Bx�; A �

a
w0
;

B �
kLw0

�
�

2

�'f
: (31)

The maximum of G is 1 when A � B � 0. When B � 0,
G�A; 0� � e�A

2
, which is the approximation used in

Eq. (27). When a � A � 0,

G�0; B� �
	
1�

B2

4
exp

�
B2

4

�
$

�
0;
B2

4

�

; (32)

where $�0; Z� �
R
1
Z dte

�t=t is the incomplete Gamma
function. As shown in Appendix A, Eq. (32) agrees
011302-5
with the direct integration of Eq. (1) in the absence of a
hole, confirming the validity of this approach.

V. ACCELERATION BY TWO CROSSED
LASER BEAMS

Another laser acceleration scheme employs a pair of
linearly polarized laser beams with the Gaussian funda-
mental mode focused to the screen and crossed at a small
angle to the z axis. If the two identical lasers are out of
phase by �, the transverse components cancel while the
longitudinal components add. In the absence of a beam-
passage aperture, the acceleration has been directly cal-
culated by integrating the longitudinal field along the
beam trajectory [3]. Here we calculate the energy gain
from the energy balance Eq. (8). It is sufficient to consider
one tilted laser since the total energy gain of two crossed
laser beams at a proper relative phase is twice as large.

First we calculate the laser field in the presence of the
screen, following closely the derivation of Sec. IV. The
Gaussian fundamental mode for a small tilt angle '� 1
at the screen location, z � 0, is

E L
x �r; z � 0; !� � E0��!�!L�e

ikx sin' exp

�
�
r2

w2
0

�
:

(33)

The diffraction integral can be evaluated as [7]

ELS
x �z>0��E0��!�!L�

�ikeikR

R

Z a

0
rdr

	exp

�
�
r2

w2
0

�
J0�kr.�; (34)

where . � ��2 � '2 � 2�' cos/�1=2, and/ is the azimu-
thal angle of the wave vector k with respect to the z axis.
In the region z < 0, the total laser field is the incident field
and the reflected field given by

E LR
x � E0��!�!L�

ikeikR

R

Z 1

a
rdr exp

�
�
r2

w2
0

�
J0�kr.�:

(35)

To compute Eq. (8), we note that jELS � EBS�j �
jELS
x EBR

r cos/j and make use of the Bessel function ex-
pansion [12]

J0�kr.� �
X1

m��1

Jm�kr��Jm�kr'�e
im/: (36)

Integration over / picks up only m � 
1 terms. Then
following the integration steps of Sec. IV, we find

�Uacc �2
2eE0kL
�

Z 1

a
rdrK1

�
kLr
�

�
exp

�
�
r2

w2
0

�
J1�kLr'�

�4eE0w0

Z 1

a=w0

dxe�x
2
J1

�
2'
'f
x
�
; (37)
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FIG. 2. The optimal tilt angle as a function of the hole radius
for the tilted Gaussian laser beam.

PRST-AB 7 CALCULATION AND OPTIMIZATION OF LASER . . . 011302 (2004)
where the extra factor of 2 on the right-hand side takes
into account two crossed laser beams, and we have as-
sumed that kL � �=w0 to use K1�x� � 1=x for the ap-
proximate expression. For a vanishing hole as a! 0, we
have

�Uacc � 2eE0w0
'f

'

	
1� exp

�
�
'2

'2
f

�

; (38)

in agreement with Ref. [3] when the injection point is at
zI � �1 and the extraction point is at zF � 0. At the
optimal tilt angle 'opt � 1:1'f , the maximum energy
gain is 1:3eE0w0. For an arbitrary a, Eq. (37) can be
used to obtain the optimal tilt angle and the maximum
energy gain (see Figs. 2 and 3). As shown in Fig. 3, the
maximum energy gain in units of mc2 can be approxi-
mated by

��max � 3:6

������
PL

P0

s
exp

�
�
a2

w2
0

�
: (39)

Here PL � cE2
0w

2
0=8 is the total laser power for the two
0 0.5 1 1.5 2
a/w0

0

1

2

3

∆γ
m

ax
(P

L
/P

0
)−1

/2

FIG. 3. The maximum energy gain of two crossed laser
beams evaluated at the optimal tilt angle from Eq. (37) (solid
line), and compared with the approximate Eq. (39) (dashed
line).
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Gaussian beams. Comparing with Eq. (27), the energy
gain of the crossed lasers has essentially the same ex-
ponential dependence on the radius of the hole. For the
same laser power, the radially polarized TEM10 mode is
more effective for acceleration (by about a factor of 1.6)
because it matches the polarization of the diffraction
radiation in this accelerating structure (see Sec. VI B for
more discussions).

VI. DISCUSSION

A. Limitations due to material damage

Results of previous sections suggest that the laser
should irradiate the accelerator structure, which is subject
to material damage at a certain threshold laser fluence.
Considering the case of the higher-order laser mode in
Sec. IV, we rewrite Eq. (30) as

��acc � 4
���
2

p �
UL

w2
0P0tL

�
1=2
w0G�A;B�

� 2

�
FL

P0tL

�
1=2
��LBG�A;B�; (40)

where UL is the laser flash energy, tL is the laser pulse
duration, and FL � 0:24UL=w2

0 is the maximum laser
fluence at r � 0:7w0 for this higher-order mode laser.
We have also assumed the hole radius a < 0:7w0 for
effective acceleration and used the previous notations A �
a=w0 and B � kLw0=� � 2=��'f� from Eq. (31). Since
the laser fluence at the material damage threshold is
known to be Fth � 2 J=cm2 for sub-ps laser pulses [14],
we assume that the laser operates at the damage threshold
[i.e., by taking FL � Fth in Eq. (40)] and optimize the
laser spot size or the focusing angle in order to obtain the
maximum energy gain. Figure 4 shows the optimal focus-
ing angle that maximizes BG�A;B� in Eq. (40). For a�
w0, the optimal laser focusing angle �'f�opt � ��1 and
the optimal spot size �w0�opt � ��L=�.
0.2 0.4 0.6
a/w0

0.5

1

1.5

2

(γ
α

f)
op

t

FIG. 4. The optimal laser focusing angle as a function of the
hole radius at the material damage threshold.
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The scaling �'f�opt � ��1 has a simple physical expla-
nation. As it follows from Eq. (27), in the limit of large
angles 'f � ��1, the energy gain does not depend on the
spot size w0 and scales with the laser power as P1=2

L . This
happens because a particle interacts with the laser on the
Rayleigh length, and although, for a given PL, increasing
w0 makes the amplitude of the laser field smaller, a
corresponding increase in the Rayleigh length compen-
sates for the smaller field and makes the energy gain
independent on w0. Further increasing w0, however,
makes the angle 'f smaller than ��1. In this regime,
the interaction length becomes shorter than the Rayleigh
length—it is determined by the phase slippage due to the
difference between the particle’s velocity and the phase
velocity of the laser light. As it follows from Eq. (30), the
energy gain in this regime (for a given PL) decreases with
w0. For a given fluence (laser power per unit area) the
optimal value of 'f turns out to be at the boundary
between those two regimes.

At the optimal focusing angle �'f�opt � ��1, we have
B0 � 2=���'f�opt
 � 2 in Eq. (40) and B0G�A;B0� � 0:8
for a� w0 from Fig. 5. If we take a typical short-pulse
laser with tL � 100 fs and �L � 1 2m, the maximum
fractional energy gain limited by the fluence damage
threshold is approximately

��max

�
� 1:6�L

����������
Fth

P0tL

s
� 7:5	 10�3: (41)

Since the interaction length is about equal to the Rayleigh
length zR � ��w0�

2
opt=�L � �2�L=� at the optimal spot

size, the effective acceleration gradient is

�Uacc

zR
�

7:5	 10�3�mc2

�2�L=�
�

12

�
GeV=m: (42)

For a 50 MeV electron (i.e., � � 100), the energy gain is
about 375 keV from Eq. (41), and the acceleration gradient
0.2 0.4 0.6
a/w0

0.2

0.4

0.6

0.8

B
0

G
(a

/w
0
,B

0
)

FIG. 5. The function B0G�A;B0� in Eq. (40) evaluated at the
optimal spot size or focusing angle.
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is about 120 MeV=m according to Eq. (42), in agreement
with the expected performance of the E-163 proposal [5].

Finally, suppose that the laser is operated at the dam-
age threshold fluence, the optimal laser energy at the
optimal spot size for maximum energy gain is

UL �
Fth�w0�

2
opt

0:24
� 8:4�2 nJ: (43)

For a 100 fs laser pulse interacting with a 50 MeVelectron
beam, the optimal laser power is PL � 0:84 GW. A larger
laser power at the given pulse duration requires a larger
laser spot to avoid the material damage and hence a
smaller longitudinal field for acceleration. Since the in-
teraction length is still ��2�L=� limited by the phase
slippage of the particle in the laser field, the total energy
gain is actually smaller if the laser power is larger than
this optimal value.

B. Optimal laser profile

As pointed out in Sec. V, the radially polarized TEM10

mode is more effective for laser acceleration than the
tilted Gaussian fundamental mode because it matches
better with the diffraction radiation pattern. For optimal
acceleration, one might consider shaping the laser trans-
verse profile in such a way that achieves maximum ac-
celeration for a given laser power. It is easy to see from
calculations in Sec. IV that for the optimum acceleration
the angular distribution of the reflected laser light ELR

must match exactly the angular distribution of the par-
ticle’s radiation. In the case a� w0, this means [see
Eq. (16)]

E LR
r � E0w0��!�!L�

eikz

z
�

�2 � ��2 : (44)

The corresponding laser power is PL � �ln��cE2
0w

2
0=4,

for �� 1. Integrating the energy balance Eq. (8) then
yields

��max � �2 ln��eE0w0 � 4
��������
ln�

p ������
PL

P0

s
: (45)

We see that the optimal laser profile (with the angular
distribution of the transition radiation) only improves the
maximum energy gain by a small factor �

��������
ln�

p
even for

an ultrarelativistic particle.

VII. CONCLUSION

In summary, linear acceleration by a laser field in
vacuum is possible only if a particle radiates in passing
the accelerating structure. In this paper, we express the
energy gain by the particle as an interference integral of
011302-7
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the laser field and the radiation field in the far zone and
hence avoid calculation of any near field that accelerates
the particle. We apply this new method to study laser
acceleration in a simple accelerating structure (a conduct-
ing screen with a beam-passing hole) and to optimize
gain for given laser parameters. We show that for optimal
acceleration, the laser should irradiate on the accelerating
structure (i.e., the dimension of the hole should be less
than the laser spot size), and the laser focusing angle (as
well as the crossing angle in the case of the two crossed
laser beams) should be comparable to the radiation open-
ing angle ��1. Limited by the damage threshold fluence,
the maximum energy gain in this accelerating structure is
proportional to the electron energy, but the acceleration
gradient scales as ��1.
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APPENDIX: COMPARISON WITH DIRECT
CALCULATION OF ACCELERATION

In the case with no hole, a � 0, when the screen stops
the laser beam from propagating to the region z > 0 the
energy gain in a laser field can be calculated directly.
Particles are accelerated by the laser beam in the region
z < 0 and stop interacting with the laser beam after
passing through the screen. (In the absence of the screen,
the laser would decelerate electrons in the region z > 0 so
that the net energy gain is zero.)

For the laser mode given by Eq. (17), the longitudinal
electric field can be found from the Maxwell equation r �
EL � 0 and is approximated by

EL
z �

i
kL

r? �EL
?�

i
kL

1

r
@
@r

�rEL
r �

�E0e
ikLz�i!Lt

w0

w

	
i
kL

2

w

�
1�

r2

w2

�
�
r2

wf




	exp

�
�
r2

w2� i
kLr

2

2f
�2i/

�
: (A1)

Consider a relativistic particle moving in the z direc-
tion along the axis of the system, r � 0 and z � vt. The
energy gain can be obtained by integrating the longitu-
dinal laser field along the particle’s trajectory from z �
�1 to z � 0 (the location of the screen):
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�Uacc�
Z 0

�1
dzeEL

z �r�0;t� z=v�

�
2eE0

kLw0

Z 0

�1
dz

i

�1� iz=ZR�
2 exp

	
ikLz

�
1�

c
v

�


�eE0w0

	
1�

B2

4
exp

�
B2

4

�
$

�
0;
B2

4

�

; (A2)

where B � kLw0=���, and the square bracket term de-
scribes the gain reduction due to relative slippage of the
particle in the laser field. This expression is identical to
Eq. (32) derived using the energy balance Eq. (8). An
approximate expression of Eq. (A2) is given in Ref. [3].
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